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Abstract

Online advertisements are increasingly prevalent on the internet. The allocation of ad

slots to advertisers has been typically studied from the perspective of a platform designer,

with the goal being maximization of metrics such as revenue, social welfare etc.

However, we study the problem of repeated ad auctions from the perspective of a con-

strained advertiser. Specifically, we show what an advertiser with non-discrimination

constraints should do given the auction mechanism is prespecified. We provide results

for the full information setting using dynamic programming for MDPs and deal with the

partial information setting via online reinforcement learning algorithms.

Keywords: Fairness, Non-discrimination, Online Learning, Reinforcement Learning,

Markov Decision Process



Contents

1 Introduction 1

1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organisation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Ad auction platform 2

2.1 Basic auction terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Ad auction platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Fairness - Absolute parity constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 System parameters and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 A full information model for fair ad auctions 4

3.1 Counterexample to the truthful strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Absolute Parity MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4 Bidding strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Online Learning 8

4.1 Why consider online performance for repeated auctions? . . . . . . . . . . . . . . . . . . . 8

4.2 Regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Model based algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4 Model Free algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Experiments 14

5.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Full information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.3 Comparing learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Conclusion 19

References 19

7 Appendix A - Upper bounding the regret 21

7.1 Continous v/s discrete bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.2 Regret bound for discrete bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.3 Regret bound for continous bids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Appendix B 33

8.1 Important results for 2nd price auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8.2 Pmf parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



1 Introduction

Online advertisements are prevalent on the internet, with companies like Google, Facebook deriving a

major portion of their revenue by displaying advertisements to the website users. After every discrete

event for e.g searching an item on Google search, scrolling through “x” amount of posts on the Facebook

homepage: an ad is displayed. Each advertiser has a target demographic and if a website user fits this

demographic (based on data collected by Google, Facebook) an ad is placed. Which advertiser’s ad to

display is determined by an auction. Each interested advertiser bids some amount and the Ad Exchange

platform e.g Google Ads, Facebook Ads [2] [1] after obtaining all the bids declares the winner(who gets

to display its ad) and the process repeats. Thus the system can be viewed as repeated auctions,

until some finite number of repetitions.

In repeated auction literature we usually deal with 2 types of constraints - 1) finite budget constraint

and the more recently studied - 2) non-discrimination constraint (fairness). Fairness constraints

arise due to many reasons [8], some are even legally required for e.g no discrimination by the advertiser

based on the user’s gender, race etc.

Most Ad exchange platforms run a second price auction (see section 2.1) to determine the winning

ad. In the absence of any constraints this repeated auction is easy to analyse, however as soon as we

add budget constraints and/or fairness constraints the optimal bidding strategy for the advertiser is not

trivial. [6], [10] specifically deal with budget constraints. To deal with fairness constraints [7] changes

the auction mechanism. Like [14], our focus is on what an advertiser with non-discrimination

constraints but no budget constraint should do given the ad auction is fixed to second price.

Note that we do not consider game theoretic dynamics, like [6], where other bidders adapt to the con-

strained bidders strategy. Thus the implicit assumption is the number of advertisers is “large enough” so

that this competitition does not matter and other bidders can be modelled by stationary distributions.

1.1 Contribution

This work is an extension of [14] in which the stationary distributions for the other bidders were esti-

mated from past auction data. This enabled them to precompute the optimal bidding strategy for the

current series of auctions. We relax this assumption and do not need any knowledge from past

auctions. Our contributions are to 1) make a minor but useful change in the full-information setting of

[14] to instead deal with undiscounted cumulative rewards. 2) apply online reinforcement learning(RL)

algorithms to obtain near optimal policies. In particular, we apply both model-based and model-free

algorithms. The model-based algorithms [17][16][4] are recent techniques and have an added advantage

of having a theoretical regret bound. The model-free algorithms are based on Temporal difference learn-

ing, a classic reinforcement learning paradigm. We see empirically that the (a) model-based algorithms

perform close to optimal. (b) model-free algorithms always performed worse compared to model-based,

even failing badly in certain scenarios.
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1.2 Organisation of the thesis

In Chapter 2 we begin with a description of the Ad auction platform. Chapter 3 models ad auctions

with fairness as a Markov Decision Process in the full information setting. Chapter 4 deals with partial

information and applies various online RL algorithms. Chapter 5 contains the numerical results and

comparison for all the algorithms. Appendix A has the theoretical regret bounds and Appendix B

important results for a 2nd Price auction.

2 Ad auction platform

In this section we describe the Ad auction platform, its corresponding parameters and the fairness con-

straint the advertiser has to follow.

2.1 Basic auction terminology

Consider a total of N advertisers, each indexed by i ∈ {1, . . . , N}. Advertiser i values the user at vi,

known as its true value1, and makes a bid bi. The platform collects all the bids and runs an auction

to determine the winning advertiser i′. The price p is determined by a function f(.) in the auction

mechanism i.e p := f(b1, . . . , bN ). The corresponding reward ri′ obtained is defined as ri′ := vi′ − p.

Many auction mechanisms have been studied in auction theory literature [13] but the one we focus on and

which is prevalent in internet ad platforms is the “Sealed bid second price auction”. It is described

as follows, 1) Collect bids from all the advertisers; 2) The highest bidding advertiser wins the auction

(i.e gets to display its ad); 3)the price paid by the winner is the second highest bid.

Winner i′ := arg max
i

bi

p := max
j 6=i′

bj

ri′ := vi′ − p (2.1)

The reward for all advertisers except the winner is defined to be zero i.e ri|i6=i′ := 0.

Concisely, for any i ri = (vi −max(b−i)) · 1bi>max b−i . For 2nd price auctions bidding the true

value (truthful bidding) is a weakly dominant strategy (see Appendix 8.1). In other words if bidding

truthfully obtains a reward r then bidding anything else can only give a reward ≤ r

2.2 Ad auction platform

In a typical Ad exchange platform, e.g Google Ads, users keep arriving and their attributes (e.g age,

gender, location) are relayed to the advertisers. This process goes on for T slots, known as the ad cam-

paign duration. The attributes of the user observed in the current slot(t ∈ {1, . . . , T}) determines each

advertiser’s true value. An interested advertiser j (i.e with vj > 0) bids bj , all uninterested advertisers are

assumed to be bidding zero. Since the auction mechanism is fixed to second price, the optimal strategy

for an advertiser with no budget or fairness constraints, is to bid truthfully. This holds because from the

perspective of the unconstrained advertiser each user can be treated as a new second price auction.

1This is only known to advertiser i, so it is also called its private value
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Our focus is on computing the optimal bidding strategy from the perspective of a

fairness constrained advertiser. Section 2.3 describes quantitatively the absolute parity constraint.

2.3 Fairness - Absolute parity constraint

As in [14] Let ω denote a set of sensitive attributes with respect to which the advertiser due to legal

or other reasons wants to be fair. We will focus only on one sensitive attribute i.e gender of the user.

Thus w := {gender ∈ {male, female}}. nm(t), nf(t) denotes the number of male, female users

that the advertiser has won till time slot t.

Definition 1. K-parity w.r.t gender

Advertiser follows a K-strict absolute parity constraint with respect to gender iff, after each auction

round t ∈ {1, . . . , T}, |nm(t)− nf (t)| ≤ K

Figure 2.1: Typical Ad exchange platform

2.4 System parameters and Goal

Let index j denote the constrained advertiser. With Figure 2.1 in mind: A single user arrives at each time

slot. We assume that the probability of it being male is pm, probability of it being female is pf := 1−pm.

The constrained advertiser’s true values for male and female are drawn from probability distributions

Vm, Vf (both with support ∈ [0, 1]). vm, vf are the expected values of Vm and Vf respectively. The

maximum of the other advertiser’s bids when the user is male is Dm. Df is similarly defined for a

female user. To obtain the optimal strategy it is sufficient to know gm, gf : the cumulative distribution

function(cdf) for the random variables Dm, Df (the supports are again ∈ [0, 1]). Quantitatively, for user

gender θ ∈ {m, f} and Bi,θ denoting the corresponding bid by advertiser i.

Dθ := max
i|i 6=j

Bi,θ

gθ(x) = P (Dθ ≤ x) =
∏
i|i6=j

P (Bi,θ ≤ x) (2.2)
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The immediate reward to the advertiser is 1b(t)>Dθ · (Vθ −Dθ). Here b(t) ∈ [0, 1] is the bid by the

constrained advertiser at time t. The following is a straightforward result by taking the expectation of

the immediate reward.

E[1b(t)>Dθ (Vθ −Dθ)] = P (Dθ < b(t))vθ −
∫ b(t)

0

xg′θ(x) = (vθ − b(t))gθ(b(t)) +

∫ b(t)

0

gθ(u)du (2.3)

T is the duration of the ad campaign. The b(t)’s for t ∈ {1 . . . T} that provide maximum expected

cumulative reward given the parity constraint in definition (1) are what we seek.

3 A full information model for fair ad auctions

Here we extend the model in [14] to work with an undiscounted 1 ad campaign of duration T . The

learning algorithms (in section 4.2) work with undiscounted rewards so its a good common ground for

comparison.

3.1 Counterexample to the truthful strategy

We can question why bidding truthfully fails, here’s why: Consider an ad campaign of 3 slots with

K-parity = 1 and the advertiser’s value for male and female vm = 0.5, vf = 0.5 respectively. The

advertiser knows from past history that the other bidders probably value male more than female. However

it ignores this data and just bids truthfully.

Consider the sequence in the table, the optimal strategy obtains a cumulative reward of 0.3, it overbids2

and wins in the first slot, wins in the second and also wins in the third. .

Truthful bidding obtains a cumulative reward of 0.2, it loses the first auction, wins the second, cannot

bid in the third(as the parity |nm(t)− nf (t)| ≤ K = 1 has to be satisfied).

t = 1 (male) t = 2 (female) t = 3(female)
Highest bid others(max b−j) 0.6 0.3 0.3
reward-optimal at slot t -0.1 0.2 0.2
reward-truthful at slot t 0 0.2 0

3.2 Markov Decision Process

Markov Decision Process(MDP) and techniques to solve it are used in this chapter and Chapter 4. For

our purposes we need basic definitions and 2 algorithms.

Definition 2. MDP is a 4-tuple M = (S,A,P,R), where S is a set of states called the state space, A

is a set of actions called the action space, P (s′|s, a) = P (st+1 = s′ | st = s, at = a) is the probability that

action a in state s at time t will lead to state s′ at time t+ 1, R(s, a) is immediate reward received after

taking action a in state s, R̄(s, a) is its expected value.

The goal is to find a policy πt
3 that will maximize the expected sum: E[

∑T
t=1R(st, at)], where we

choose the action at time t according to the policy πt, i.e at = πt(st). Value iteration can be defined by

1reward at t = 1 is same as reward at t = t′
2bidding higher than its true value for male which was 0.5 - Overbid
3For each t ∈ {1, . . . , T}, πt : S → A
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the form of update:

Ji+1(s) := max
a

{
R̄(s, a) +

∑
s′

P (s′|s, a)Ji(s
′)
}

(3.1)

There is a special significance to Ji(s), when dealing with finite T it represents the expected cumulative

reward starting from state s with i steps remaining.

For the average reward maximization criterion, a stationary ε- optimal policy can be obtained for a

unichain MDP. 4 [18] [3].

Accordingly Algorithm 1 deals with expected cumulative reward maximization (finite T ). Algorithm 2 is

used for finding the policy that gives average reward ε - close to ρ∗M (the optimal average reward).

Algorithm 1 Value iteration finite horizon

1: procedure get policy
2: J0(s) = maxa R̄(s, a) ∀s
3: for t = 1 . . . T do
4: πt(s) = arg maxa[R̄(s, a) +

∑
s′ P (s′|s, a)Jt−1(s′)] ∀s

5: Jt(s) = R̄(s, πt(s)) +
∑
s′ P (s′|s, πt(s))Jt−1(s′) ∀s

6: end for
7: return πt ∀t ∈ {1, . . . , T} . each πt : S → A
8: end procedure

Algorithm 2 Value iteration for Unichain MDP

1: procedure get policy
2: Input optgap ε
3: t = 0, Jprev ∈ Uniform[0, 1]S . All states arbitrarily set to Uniform draws ∈ [0, 1]
4: while True do
5: πt(s) = arg maxa[R̄(s, a) +

∑
s′ P (s′|s, a)Jprev(s

′)] ∀s
6: Jnext(s) = R̄(s, πt(s)) +

∑
s′ P (s′|s, πt(s))Jprev(s′) ∀s

7: if maxs(Jnext(s)− Jprev(s))−mins(Jnext(s)− Jprev(s)) < ε then . span(Jnext − Jprev) < ε
8: break
9: end if

10: Jprev = Jnext, t = t+ 1
11: end while
12: return πt
13: end procedure

The optimal state-action value function Q∗(s, a) is defined as the optimal total expected reward

obtained starting from state s given action a is chosen initially. The relation between J∗(s) and Q∗(s, a)

is as follows.

J∗(s) = max
a∈A

Q∗(s, a)

Q∗(s, a) = R̄(s, a) +
∑
s′∈S

P (s′|s, a)J∗(s′) (3.2)

4i.e any stationary deterministic policy induces a single ergodic Markov chain
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Definition 3. Diameter of MDP DM

For the stochastic process generated by stationary deterministic policies π : S → A on MDP M with

initial state s, T (s′|M,π, s) is the random variable for the first time step in which state s′ is reached in

this process.

DM := max
s6=s′

min
π:S→A

E[T (s′|M,π, s)] (3.3)

3.3 Absolute Parity MDP

Given the K-parity constraint(1) and the system parameters 2.4 we can represent the problem as a

MDP.

The state is a tuple containing 1) The difference: nm − nf ∈ {−K, . . .K}; 2) gender of the current user

θ ∈ {m, f}, thus the state space S = {−K, . . . ,K} × {m, f}. The action is a bid b ∈ [0, 1], thus the

action space A = [0, 1]. The expected immediate reward R̄(s, b) = (vθs − b)gθs(b) +
∫ b

0
gθs(u)du,

here θs is gender in state s. For transition probabilities P (s′|s, b) it is useful to refer Fig 3.1. Any

transition from st to st+1 can be seen as a two step process: 1) make a bid, observe the corresponding

change in difference ; 2) observe gender of the user in the next slot.

For the edge states (−K, f) and (K,m) the advertiser does not bid as that could violate the K-parity

constraint, thus the difference remains the same. In any other state the advertiser always bids and if it

wins the auction the difference changes. Which means for the edge states we have exactly 2 transitions.

Whereas the others states give us 4 “types” of transitions, all the bids transition to the same 4 states

but with different probabilities depending on the amount bid.

Figure 3.1: K = 2, blue stars are edge states, red stars are normal states.(All transitions not shown)

3.4 Bidding strategies

Here we compute the optimal bidding strategy that maximizes expected cumulative reward. We have the

absolute parity MDP and a finite horizon(ad campaign duration T ), thus the optimal bid πt(s) in state

s = (diff, θ) with t slots remaining can be computed by using Algorithm 1.

π0(s) = arg max
b

R̄(s, b) = arg max
b

[
(vθs − b)gθs(b) +

∫ b

0

gθs(u)du
]

πt(s) = arg max
b

[
(vθs − b)gθs(b) +

∫ b

0

gθs(u)du+
∑
s′

P (s′|s, b)Jt−1(s′)
]

(3.4)
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gθ(u) is the cumulative distribution function, its non-decreasing, so for the continuous action space

maximization we can use the following lemma.

Lemma 4. fφ(x) = (φ − x)h(x) +
∫ x

0
h(u)du where h(x) is a non-decreasing function is maximized at

x = φ

In case of discrete b, arg maxb

[
(φ− b)h(b) +

∫ b
0
h(u)du

]
would either be dφeclosest or bφcclosest i.e the

nearest discrete bid above or below φ respectively (proof in Appendix 8.1) i.e we need not do a search

through all the discrete b values.

In the following analysis we continue with bids ∈ [0, 1], noting that the discrete analysis is not much

different. π0(s) = vθs , in other words the advertiser should bid truthfully for the last slot.

For state s = (d, θ), win difference(wd) is the difference if the advertiser wins the auction, therefore, if

θ = m,wd = d+ 1 and if θ = f, wd = d− 1. θ′ ∈ {m, f} is next user’s gender, the probability of winning

user of type θ given bid = b can be obtained using the cumulative distribution gθ(b). Thus the transition

probabilities P (s′|s, b)

P (s′ = (wd, θ′)|s = (d, θ), bid = b) = gθ(b) · pθ′

P (s′ = (d, θ′)|s = (d, θ), bid = b) = (1− gθ(b)) · pθ′

To get πt(s) the key observation is
∑
s′ P (s′|s, b)Jt−1(s′) in Eqn (3.4) can be conveniently written as

ψt(s) · gθ(b) + ct(s).

πt(s) = arg max
b

[
(vθ − b)gθ(b) +

∫ b

0

gθ(u)du+

term2︷ ︸︸ ︷∑
s′

P (s′|s, b)Jt−1(s′)
]

term2 = gθ(b)pmJt−1(wd,m) + gθ(b)pfJt−1(wd, f) + (1− gθ(b))pmJt−1(d,m) + (1− gθ(b))pfJt−1(d, f)

term2 = gθ(b)

ψt(s)︷ ︸︸ ︷{
pmJt−1(wd,m) + pfJt−1(wd, f)− pmJt−1(d,m)− pfJt−1(d, f)

}
+

ct(s)︷ ︸︸ ︷
pmJt−1(d,m) + pfJt−1(d, f) (3.5)

πt(s) = arg max
b

[
(vθ + ψt(s)− b)gθ(b) +

∫ b

0

gθ(u)du+ ct(s)
]

(3.6)

By Lemma 4 πt(s) = vθ + ψt(s) , Thus the recursive equations are:

J0(d, θ) =

∫ vθ

0

gθ(u)du ∀d ∈ {−K, . . . ,K}, except J0(−K, f) = J0(K,m) = 0

Jt(d, θ) = pmJt−1(d,m) + pfJt−1(d, f) +

∫ πt(s)

0

gθ(u)du (3.7)

Recall πt(s) := 0 for the edge cases. Thus Jt(K,m) and Jt(−K, f) are pmJt−1(K,m) + pfJt−1(K, f) and

pmJt−1(−K,m) + pfJt−1(−K, f) respectively.
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3.4.1 Truthful bidding - a baseline

We now evaluate the truthful bidding strategy i.e bidding the true value each time. We can follow a

similar analysis as done earlier. In fact, we do not need Lemma 4 as the bidding strategy is fixed. We

obtain the following recursive equations.

J0(d, θ) =

∫ vθ

0

gθ(u)du ∀d ∈ {−K, . . . ,K} except J0(−K, f) = J0(K,m) = 0

Jt(d, θ) = pmJt−1(d,m) + pfJt−1(d, f) + ψt(s)gθ(vθ) +

∫ vθ

0

gθ(u)du

Even though optimal bidding always provides higher expected cumulative reward, truthful bidding

has a nice property i.e it always gives positive cumulative reward in expectation. Thus truthful bidding

serves as a baseline which the online learning algorithms in the next section should beat.

4 Online Learning

In this section we deal with the case when we do not know the bidding behaviour of the other bidders.

Thus, we cannot precompute the optimal bids like in the earlier section. First we describe what is known

to the learner (the constrained advertiser) and what types of feedback it can receive. We also introduce

regret, which is a metric for how close the learner is to the optimal total reward. After this we provide

the list of algorithms that were implemented.

4.1 Why consider online performance for repeated auctions?

The ad campaign by the advertiser lasts for T time slots. At the end of the ad campaign many system

parameters could change - for e.g gm, gf or pm, pf . A practical example is when the advertiser switches ad

platforms - going for GoogleAds to FacebookAds, or even within the same platform when new competitors

enter. Thus motivated by such scenarios the goal of the learning algorithm is to maximize

cumulative reward till slot T , given that it does not have a complete description of the

system.

In the following we assume the advertiser knows its own value distributions Vm, Vf and their expected

values vm, vf . It also knows the probabilities of a male or female user appearing pm, 1 − pm. But

the advertiser does not know gm and gf - the cumulative distribution functions for Dm and Df (See

Eq(2.2)). At the end of each round the learner receives feedback about the other bids depending on the

action chosen. We consider two possible auction feedbacks 1

Type 1 The first type of feedback is when the learner observes the exact draws of Dθ, θ ∈ {m, f}
in each time slot. This kind of feedback is obtained when the ad auction platform makes the bid of all

advertisers public after each round. Intuitively we can see that a Bayesian update could work here.

Type 2 The second kind of feedback is when the learner only knows whether it won or lost the

auction. This scenario occurs when the ad auction platform does not make all the bids public. In

essence, the learner observes two kinds of data 1) exact 2) censored. If the learner wins the auction it

receives reward (Vθ −Dθ) and since Vθ is known, the draw Dθ can be exactly found out. If it loses, it

1Note the UCRL2 adapted algorithm in Appendix A does not use this side information, it updates
reward, transition estimates only for the action taken

8



only knows that the maximum of the other bids is greater than its own bid i.e Dθ ∈ (bt, 1.0] denoted by

b+t known as right censored data. We can still insist on doing Bayesian updates with the exact draws

and discarding the censored observations, however this is a clear wastage of samples. There is efficient

way of estimating cumulative distribution functions in the presence of censored data [12]. The survival

function S(x) := P (X > x) = 1− cdf(x) has been studied from the context of lifetime analysis and

Ŝkm(x), the Kaplan- Meir(KM ) estimator is a classic non-parametric statistic for it. Adapted to our

problem it is as follows.

Ŝkm(x) =
∏

i: xi≤x

(
1− hi

ni

)
Where xi ∈ [0, 1] is a point at which at least one exact draw of Dθ has been observed. hi is the

number of exact draws at xi, these are obtained only when the learner wins the auction. ni is the

total observations that are ≥ xi, thus ni includes both exact and censored observations.

Thus, we maintain two estimators 1− Ŝkmm(x) and 1− Ŝkmf(x) for gm and gf respectively. If we

receive type 2 feedback then the update phase in the model-based algorithms updates the KM estimator.

4.2 Regret

As in [5],[4],[16] here we describe regret, a metric which the model based algorithms try to minimize. A

learning algorithm L starting in an initial state s of the MDP M generates a stochastic process. This

stochastic process is described by (st, at, rt) - the state at step t, the action taken by L in step t, and the

reward obtained at step t. The corresponding total reward for L in T steps is

R(M,L, s, T ) :=

T∑
t=1

rt

From R(M,L, s, T ), we obtain limT→∞
1
T E[R(M,L, s, T )] the average reward. The average reward can

be maximized by some stationary deterministic policy π : S → A, the learning algorithm of course doesn’t

know this apriori, the regret captures how close we are to optimal performace. The optimal average

reward ρ∗M for a communicating MDP(i.e having finite diameter) is independent of the start state and

is given by:

ρ∗M := max
π∈Πstationary

∑
s∈S

µπ(s)r(s, π(s)) (4.1)

Where the stationary distribution µπ ∈ [0, 1]S is a probability vector that is obtained by following the

stationary policy π 2. r(s, π(s)) is the expected reward obtained by taking action π(s) in state s. Regret

∆ for the learning algorithm L after T steps is defined as

∆(M,L, s, T ) := Tρ∗M −
T∑
t=1

rt (4.2)

We now describe the following list of learning algorithms.

2Do not confuse the stationary policy and stationary distribution, the former describes actions, the latter describes
steady state probabilities of the induced Markov chain
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Model-Based Algorithms

• Posterior Sampling for Reinforcement Learning

• Thompson Sampling with Dynamic Episodes

• Upper Confidence Reinforcement learning 2

Model-free Algorithms

• Sarsa

• Expected Sarsa

• Q Learning

• Double Q Learning

4.3 Model based algorithms

Model based learning algorithms L that provide non trivial upper bounds on Regret ∆(M,L, s, T )

have been obtained with two main techniques - 1) Bayesian learning 2) Optimism in the face of un-

certainty(OFU).

4.3.1 Bayesian learning based

The two Bayesian learning algorithms Posterior sampling for reinforcement learning (PSRL) [16] and

Thompson sampling with dynamic episodes (TSDE) [17] can be summarized in 3 steps:

1) Put prior distributions on unknown parameters of the MDP, 2) Compute the optimal policy for

the MDP(with parameters drawn from the priors) and follow this policy for some time steps 3) Update

the priors using the observations, then go back to step 2)

Algorithm 3 Posterior Sampling for Reinforcement Learning -PSRL

1: Input: Prior distribution φ, Episode length I
2: for t = 0, 1, . . . T − 1 do . Time steps
3: if t ≡ 0 (mod I) then
4: sample MDP Mep ∼ φ(.|Ht−1) . Sample from updated prior
5: compute πep . obtained by value iteration on Mep using Algorithm 2
6: ep← ep+ 1 . Increment the episode number
7: end if
8: action at ← πep(st)
9: observe rt and st+1

10: Ht = Ht−1 ∪ (at, rt, st+1, auctionFeedbackt) . Add observation to history
11: end for

For the absolute parity MDP the unknown system parameters are gm, gf so we place priors only on

those. We also include auction feedback at time t in the history H. T is the duration of the ad campaign.

After every I steps the prior is updated. According to [15] PSRL is conjectured3 to give a Õ(IS
√
AT )

upper bound on E[∆(M,L, s, T )](the expected regret).

3The PSRL paper [16] defines the regret only for the episodic tasks, whereas our learning problem is non-episodic. [15]
suggests practical solutions for the non-episodic case, e.g selecting an artifical episode length I

10



Algorithm 4 Thompson Sampling with Dynamic Episodes - TSDE

1: Input: Prior distribution φ
2: t← 1, tep ← 0
3: for ep = 1, 2, . . . do
4: tv ← t− tep . tv is a temporary variable controlling the episode duration
5: tep ← t
6: sample MDP Mep ∼ φ(.|Ht−1) . Sample from updated prior
7: compute πep . Using Algorithm 2 on Mep

8: while t ≤ tep + tv and Nt(s, a) ≤ 2Ntep(s, a) ∀(s, a) ∈ S ×A do
9: Action at = πep(st)

10: Observe rt and st+1

11: Ht = Ht−1 ∪ (at, rt, st+1, auctionFeedbackt) . Add observation to history
12: end while
13: end for

Nt(s, a) is number of times the algorithm visited state s and took action a until time t. TSDE [17]

is proven to provide a Õ(HS
√
AT ) upper bound on expected regret given that the MDP it operates on

is weakly communicating. H is an upper bound on the bias span 4 of J returned by Algorithm 2. From

[9] H ≤ DM the diameter. Note that the absolute parity MDP is weakly communicating and has a finite

diameter.

In summary, both Algorithm 3 and Algorithm 4, proceed in episodes. Algorithm 3 uses a fixed interval

of I after which it resamples the parameters for the MDP. However in Algorithm 4 the episode lengths

are dynamic. It depends on two stopping events - 1) t > tep + tv and 2) Nt(s, a) > 2Ntep(s, a). The

first event ensures that the episode length grows at a linear rate and the second event ensures that the

number of visits to any state-action pair (s, a) is at most doubled

4.3.2 Optimism in the face of Uncertainty - OFU

Here we give a sketch of the UCRL2 Algorithm, for a full description see [4]. In Appendix A we alter

UCRL2 to only maintain a (gender, action) count as that is what matters for the absolute parity MDP
5.

Algorithm 5 UCRL2-Sketch

1: Input: Confidence set constructor σ, Episode end signaller E
2: t← 0
3: for ep = 1, 2, . . . do
4: construct confidence set Mep = σ(Ht−1)

5: find πep ∈ arg maxπ∈Πstat

[
maxM∈Mep

ρπM

]
. Using extended value iteration, see [4]

6: while E(Ht−1) = False do
7: Action at = πep(st)
8: Observe rt and st+1

9: Ht = Ht−1 ∪ (at, rt, st+1), t← t+ 1 . Add observation to history
10: end while
11: end for

The general structure resembles the Bayesian learning algorithms described earlier, however the key

differences are line 4 and 5. Instead of sampling MDP parameters from a prior distribution, UCRL2

4maxs(Jt+1(s)− Jt(s))−min(Jt+1(s)− Jt(s))
5or infact for any 2nd price repeated auction whose constraints result in a MDP with bounded diameter
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defines a confidence set Mep = σ(Ht−1) of plausible MDP’s within which the true MDP lies with high

probability. Then an algorithm known as extended value iteration finds a stationary policy that gives op-

timal average reward amongst all these plausible MDPs, this explains the two maximizers(arg max,max)

on line 5. This policy is run for the episode till the episode signaller ends the episode. Note that the

episode end signaller depends on the observations gathered, In this regard UCRL2’s Episode end sig-

naller is slightly similar to TSDE and only starts a new episode when the total number of visits to any

(state,action) doubles. UCRL2 provides a Õ(DS
√
AT ) upper bound on the regret with high probability.

In particular the following is its main theorem

Theorem 5. With probability at least 1− δ, it holds that for any initial state s ∈ S and any T > 1

∆(M,UCRL2, s, T ) ≤ 34DS
√
ATlog(T/δ)

Note that in practice for our MDP which has similar transition probabilities, rewards - the actual

regret for both Bayesian learning and Optimism based methods is far below the upper bounds for regret.

In any case its good to have theoretical results, and empirically we shall see that they beat the model-free

algorithms.

4.4 Model Free algorithms

The algorithms described earlier worked with MDPs directly, however it is not necessary to do this. In

the following we describe some model free online learning algorithms belonging to the class of Temporal

difference(TD) learning 6 [19]. These work by maintaining an online estimate of the state-action function

Q, which approximates the optimal state action function Q∗. By rewriting Eqn (3.2)

Q∗(s, a) = R̄(s, a) +
∑
s′∈S

P (s′|s, a) max
a∈A

Q∗(s′, a) (4.3)

Here all the algorithms maintain a Q table, updating it at time t for action at taken in state st. The

update is a convex combination of the old and new estimate of Q(st, at), the learning rate α ∈ [0, 1]

decides the weight given to the recent observation.

The states for the absolute parity mdp are S = (diff ∈ {−K, . . . ,K}, gender = {m, f}) and actions are

the discrete bids. Thus the Q table size is 2A(2K + 1).

These TD learning algorithms converge asymptotically to the optimal policy, but are not studied from

the perspective of regret minimization. However, they serve as a good baseline which our model-based

learning algorithms should beat.

Definition 6. Epsilon greedy policy

Suppose an agent is in state st, it is said to follow the ε greedy policy with respect to the Q table if it

picks an arbitrary action w.p ε and action from arg maxaQ(st, a) w.p 1− ε

4.4.1 Sarsa

The S,A,R stand for state, action, reward respectively. It is an on-policy algorithm i.e the same policy(ε

greedy) is used for updating Q and for getting next action.

6More specifically TD(0)
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Algorithm 6 Sarsa

1: Algorithm Parameters: learning rate α ∈ (0, 1], small ε > 0
2: Initialize Q ∼ Uniform[0, 1]S×A . Initialize arbitrarily
3: diff← 0, θ ← Bernoulli(pf ), s = (diff, θ). . diff = 0, no auctions won for either gender
4: Get a from Q(s,A) acc to ε greedy
5: for t = 1, 2 . . . T do . Time steps, T is the ad campaign duration
6: Take action a
7: Observe r and s′

8: Find action a′ derived from Q(s′, A) acc to ε greedy
9: Q(s, a)← (1−α)Q(s, a) +α(r+Q(s′, a′))

10: s← s′, a← a′

11: end for

4.4.2 Expected Sarsa

Expected sarsa is similar to sarsa, except the Q table is updated using the expectation of next (state,

action) pairs. The expectation helps reduce overall variance compared to sarsa. pεg(a|s) is the probability

of taking action a at state s when following the epsilon greedy policy.

Algorithm 7 Exp Sarsa

1: Algorithm Parameters: learning rate α ∈ (0, 1], small ε > 0
2: Initialize Q ∼ Uniform[0, 1]S×A

3: diff← 0, θ ← Bernoulli(pf ), s = (diff, θ)
4: for t = 1, 2 . . . T do
5: Take action a derived from Q(s,A) acc to ε greedy
6: Observe r and s′

7: Q(s, a)← (1−α)Q(s, a) +α(r+
∑∑∑
a pεg(a|s′) ·Q(s′, a))

8: s← s′

9: end for

4.4.3 Q learning

In expected sarsa the probabilities pεg(a|s) are derived from Q according to ε greedy. Pure greedy is

ppure−g(a|s) = 1 for an action maximizing Q(s, a) and 0 for the rest, this gives the famous Q Learning

algorithm. Q learning is an off-policy algorithm as it uses ε greedy for its action selection and pure

greedy for the Q table update.

Algorithm 8 Q learning

1: Algorithm Parameters: learning rate α ∈ (0, 1], small ε > 0
2: Initialize Q ∼ Uniform[0, 1]S×A

3: diff← 0, θ ← Bernoulli(pf ), s = (diff, θ)
4: for t = 1, 2 . . . T do
5: Take action a derived from Q(s,A) acc to ε greedy
6: Observe r and s′

7: Q(s, a)← (1−α)Q(s, a) +α(r+ maxaQ(s′, a))
8: s← s′

9: end for
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4.4.4 Double Q learning

A known theoretical problem with plain TD(0) updates is maximization bias. A maximum over estimated

values(be it using ε greedy, pure greedy) is used as an estimate of the max value. If the number of time

steps T is not large(see [11]) this leads to a positive bias i.e the estimate Q(s, a) is larger than Q∗(s, a).

One solution is to use two Q tables, both estimating Q∗(s, a) but at a given time step only one table will

be updated. The action is chosen using an ε greedy policy on Q1 +Q2

Algorithm 9 Double Q learning

1: Algorithm Parameters: learning rate α ∈ (0, 1], small ε > 0
2: Initialize Q1, Q2 ∼ Uniform[0, 1]S×A

3: diff← 0, θ ← Bernoulli(pf ), s = (diff, θ)
4: for t = 1, 2 . . . T do
5: Take action a derived from Qcombined := (Q1(s,A) +Q2(s,A)) acc to ε greedy
6: Observe r and s′

7: if Bernoulli(0.5) == 1 then . Fair coin flip decides which Q table is to be updated
8: Q1(s, a)← (1−α)Q1(s, a) +α(r+Q2(s′,arg maxaQ1(s′, a))
9: else

10: Q2(s, a)← (1−α)Q2(s, a) +α(r+Q1(s′,arg maxaQ2(s′, a))
11: end if
12: s← s′

13: end for

5 Experiments

Here we describe the empirical performance of the algorithms mentioned in Section 4.2.

5.1 Simulation parameters

We consider discrete bids ∈ {0, 1
n ,

2
n . . . , 1.0}, n = 100. The other advertiser’s bids follow scaled Beta

binomial distributions, the scaling factor being 1
n . i.e, Bother is of the form 1

nBetaBinom(n, α, β) 1.

This means each of their bids lie ∈ [0, 1] and are discrete. Moreover, the choices of α, β can make the

distribution take many shapes.

According to the analysis in section 3.4, what is more important for the bidding dynamics is the distribu-

tions for Dm and Df - the maximum of the other advertiser’s bids when the user is male or female. For

specific choices of α, β, the distributions for Dm, Df resemble normal distributions (see Appendix 8.2).

The total number of bidders N is 50 (including the constrained advertiser), probability of male pm is set

to 0.5 , the ad campaign duration T is 10000 rounds and absolute parity constraint K = 5. We indeed

have results for various other parameters but the above choices are good for understanding the general

empirical performance of the various algorithms.

5.2 Full information

We first observe what the cumulative reward in the full information setting is. Broadly speaking we are

in 2 cases - 1)The total reward from truthful bidding is not comparable to the optimal total reward.

2)The total reward from truthful bidding is comparable to the optimal total reward.

1Do not confuse this α with the learning rate of TD learning
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Scenario vm vf E(Dm) E(Df ) TRopt
TRopt
simulated

TRtruthful
TRtruthful
simulated

1 0.4 0.7 0.146 0.855 471.80 471.29 ± 3.57 1.27 1.27 ± 0.075
2 0.4 0.7 0.265 0.365 2138.56 2136.91 ± 13.08 2131.68 2130.07 ± 13.46
3 0.4 0.7 0.672 0.855 4.97× 10−11 ' 0 0 4.97× 10−11 ' 0 0

Table 5.1: 3 scenarios

In the table above, TRopt is the optimal expected total reward(precomputed by value iteration).

TRoptsimulated is obtained after 50 simulation runs, in each run the bidding policy is given by (3.7), the ±
refers to the standard deviation from the mean of these 50 simulations. TRtruthful and TRtruthfulsimulated

are obtained similarly for truthful bidding.

Explanation for observations: Recall the form of reward (2.1)

• In scenario 1 since vm > E[Dm] and E[Df ] > vf the optimal policy has an incentive to overbid for

females in order to win males for whom it underbids 2. Whereas truthful bidding performs poorly.

• For scenario 2, vm > E[Dm] and vf > E[Df ], thus bidding truthfully still wins many auctions

with positive reward. Thus optimal and truthful bidding are comparable, both giving a high total

reward.

• In scenario 3, vm < E[Dm] and vf < E[Df ], there is no incentive to overbid for either gender by

the advertiser as it cannot obtain the other gender at a positive reward. Here optimal and truthful

bidding are comparable and both give ' 0 total reward. In addition, the simulated results have no

deviation from 0, i.e they never won an auction.

5.3 Comparing learning algorithms

We now compare the performance by the learning algorithms for the 3 scenarios in table 5.1. Each of the

algorithms is run 50 times, ARalg(t) the average reward for an algorithm in slot t is calculated 3.

CRalg(t) :=

t∑
t′=1

ARalg(t
′) (5.1)

RegL(t) := CRopt(t)− CRL(t) (5.2)

Where CRalg(t) is cumulative reward for an algorithm till time t (averaged over 50 runs), RegL(t) is the

regret of the learning algorithm. Note that regret ∆(M,L, s, T ) in (4.2) is defined only for T not for

t ∈ {1, . . . , T − 1}. Thus technically speaking RegL is a valid estimator of ∆ only at the last slot T .

We display two kinds of plots 1)CRalg(t) vs t. 2) RegL(t) vs t.

2Underbidding and overbidding refers to bidding under or over the true value
3Reward in slot t across all 50 runs is averaged to get ARalg(t)
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Figure 5.1: Cumulative reward for scenario 1
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Figure 5.2: Regret for scenario 1

Scenario 1 According to Fig 5.1 the model based algorithms beat the model free algorithms. However

the model free algorithms still perform better than the truthful bidding strategy - which gives the lowest

cumulative reward. The model based algorithms are close together4 in Fig 5.1 and can be made apart in

Fig 5.2. Among the model-based algorithms TSDE gives the lowest regret at time T . In the model free

algorithms, Expected sarsa gives the highest cumulative reward at time T .

4all are within the curly bracket marker in the figure
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Scenario 2 In Fig 5.3 optimal, truthful bidding and model-based algorithms are all close together and

they beat the model free algorithms. The model based algorithms can be made apart in Fig 5.4, but

there seems to be no clear trend like in Fig 5.2. PSRL km 5 gives the lowest regret at time T . Among the

model free algorithms, expected sarsa and sarsa are close but expected sarsa has the higher cumulative

reward at time T .

5It runs PSRL when given type 2 feedback
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Scenario 3 In Fig 5.5 optimal bidding, truthful bidding, TSDE and PSRL km give zero cumulative

reward throughout. Thus the regret is zero for TSDE and PSRL km as seen in Fig 5.6. UCRL2 and

PSRL have a very small non zero regret. All the model free algorithms fail badly, giving negative

cumulative reward. The best among them, Q learning gives a cumulative reward of ' −40 at the end of

the ad campaign. In scenario 3 the vm, vf are such that for any bid that wins an auction the advertiser

obtains negative reward with high probability, therefore any exploration step is very costly, this explains

the bad performance of the model-free algorithms.

About the regret For the absolute parity MDP with K = 5, |A| = 100, T = 10000, S := 4K+2, DM =

2K we have upper bound on regret Õ(DS
√
AT ) = 22× 104 , which is a trivial upper bound. However

the regret computed empirically for the model-based algorithms are much lower than this upper bound,
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even close to zero.

6 Conclusion

In conclusion, this thesis described ad auctions with an advertiser side fairness constraint, its modelling

as a MDP, the solution of this MDP in the full information setting and dealing with partial information via

online learning. Empirically, the model-based algorithms were close to optimal bidding and always beat

the model-free algorithms. In addition, the model-free algorithms were unreliable - sometimes performing

better than the baseline of truthful bidding and at times much worse.

References

[1] About Ad Auctions — Facebook Business Help Center. https://www.facebook.com/business/

help/430291176997542?id=561906377587030. (Accessed on 08/24/2020).

[2] About automated bidding - Google Ads Help. https://support.google.com/google-ads/answer/

2979071?hl=en. (Accessed on 08/24/2020).

[3] Eitan Altman. Constrained Markov Decision Processes. 1999.

[4] Peter Auer, Thomas Jaksch, and Ronald Ortner. “Near-optimal Regret Bounds for Reinforcement

Learning”. In: Advances in Neural Information Processing Systems 21. Ed. by D. Koller et al.

Curran Associates, Inc., 2009, pp. 89–96. url: http://papers.nips.cc/paper/3401-near-

optimal-regret-bounds-for-reinforcement-learning.pdf.

[5] Peter Auer and Ronald Ortner. “Logarithmic Online Regret Bounds for Undiscounted Reinforce-

ment Learning”. In: Advances in Neural Information Processing Systems 19. Ed. by B. Schölkopf,

J. C. Platt, and T. Hoffman. MIT Press, 2007, pp. 49–56. url: http://papers.nips.cc/paper/

3052-logarithmic-online-regret-bounds-for-undiscounted-reinforcement-learning.

pdf.

[6] Santiago R. Balseiro and Yonatan Gur. “Learning in Repeated Auctions with Budgets: Regret

Minimization and Equilibrium”. In: Proceedings of the 2017 ACM Conference on Economics and

Computation. EC ’17. Cambridge, Massachusetts, USA: Association for Computing Machinery,

2017, p. 609. isbn: 9781450345279. doi: 10.1145/3033274.3084088. url: https://doi.org/10.

1145/3033274.3084088.

[7] Elisa Celis, Anay Mehrotra, and Nisheeth Vishnoi. “Toward Controlling Discrimination in Online

Ad Auctions”. In: ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of

Machine Learning Research. Long Beach, California, USA: PMLR, Sept. 2019, pp. 4456–4465. url:

http://proceedings.mlr.press/v97/mehrotra19a.html.

[8] Amit Datta et al. “Discrimination in Online Advertising: A Multidisciplinary Inquiry”. In: ed. by

Sorelle A. Friedler and Christo Wilson. Vol. 81. Proceedings of Machine Learning Research. New

York, NY, USA: PMLR, 23–24 Feb 2018, pp. 20–34. url: http://proceedings.mlr.press/v81/

datta18a.html.

[9] Ronan Fruit et al. “Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement

Learning”. In: ICML 2018 - The 35th International Conference on Machine Learning. Vol. 80.

Proceedings of Machine Learning Research. Stockholm, Sweden, July 2018, pp. 1578–1586. url:

https://hal.inria.fr/hal-01941206.

19

https://www.facebook.com/business/help/430291176997542?id=561906377587030
https://www.facebook.com/business/help/430291176997542?id=561906377587030
https://support.google.com/google-ads/answer/2979071?hl=en
https://support.google.com/google-ads/answer/2979071?hl=en
http://papers.nips.cc/paper/3401-near-optimal-regret-bounds-for-reinforcement-learning.pdf
http://papers.nips.cc/paper/3401-near-optimal-regret-bounds-for-reinforcement-learning.pdf
http://papers.nips.cc/paper/3052-logarithmic-online-regret-bounds-for-undiscounted-reinforcement-learning.pdf
http://papers.nips.cc/paper/3052-logarithmic-online-regret-bounds-for-undiscounted-reinforcement-learning.pdf
http://papers.nips.cc/paper/3052-logarithmic-online-regret-bounds-for-undiscounted-reinforcement-learning.pdf
https://doi.org/10.1145/3033274.3084088
https://doi.org/10.1145/3033274.3084088
https://doi.org/10.1145/3033274.3084088
http://proceedings.mlr.press/v97/mehrotra19a.html
http://proceedings.mlr.press/v81/datta18a.html
http://proceedings.mlr.press/v81/datta18a.html
https://hal.inria.fr/hal-01941206


[10] R. Gummadi, Peter Key, and Alexandre Proutière. “Repeated Auctions under Budget Constraints

: Optimal bidding strategies and Equilibria”. In: 2012.

[11] Hado V. Hasselt. “Double Q-learning”. In: Advances in Neural Information Processing Systems 23.

Ed. by J. D. Lafferty et al. Curran Associates, Inc., 2010, pp. 2613–2621. url: http://papers.

nips.cc/paper/3964-double-q-learning.pdf.

[12] E. L. Kaplan and Paul Meier. “Nonparametric Estimation from Incomplete Observations”. In:

Journal of the American Statistical Association 53.282 (1958), pp. 457–481. issn: 01621459. url:

http://www.jstor.org/stable/2281868.

[13] Vijay Krishna. Auction Theory. 1st ed. Elsevier, 2002. url: https://EconPapers.repec.org/

RePEc:eee:monogr:9780124262973.

[14] Milad Nasr and Michael Carl Tschantz. “Bidding Strategies with Gender Nondiscrimination Con-

straints for Online Ad Auctions”. In: Proceedings of the 2020 Conference on Fairness, Accountabil-

ity, and Transparency. FAT* ’20. Barcelona, Spain: Association for Computing Machinery, 2020,

pp. 337–347. isbn: 9781450369367. doi: 10.1145/3351095.3375783. url: https://doi.org/10.

1145/3351095.3375783.

[15] Ian Osband and Benjamin Van Roy. “Posterior Sampling for Reinforcement Learning Without

Episodes”. In: ArXiv abs/1608.02731 (2016).

[16] Ian Osband, D. Russo, and B. Roy. “(More) Efficient Reinforcement Learning via Posterior Sam-

pling”. In: ArXiv abs/1306.0940 (2013).

[17] Yi Ouyang et al. “Learning Unknown Markov Decision Processes: A Thompson Sampling Ap-

proach”. In: Proceedings of the 31st International Conference on Neural Information Processing

Systems. NIPS’17. Long Beach, California, USA: Curran Associates Inc., 2017, pp. 1333–1342.

isbn: 9781510860964.

[18] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. 1st.

USA: John Wiley amp; Sons, Inc., 1994. isbn: 0471619779.

[19] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. 1st. Cambridge,

MA, USA: MIT Press, 1998. isbn: 0262193981.

20

http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://www.jstor.org/stable/2281868
https://EconPapers.repec.org/RePEc:eee:monogr:9780124262973
https://EconPapers.repec.org/RePEc:eee:monogr:9780124262973
https://doi.org/10.1145/3351095.3375783
https://doi.org/10.1145/3351095.3375783
https://doi.org/10.1145/3351095.3375783


7 Appendix A - Upper bounding the regret

Recall the definitions, results for 2nd Price auction We are considering a bidding model in which:

• We assume true values of ad slot and bids for ad slots ∈ [0, 1].

• gender θ = {m, f}, Absolute parity K

• State s = (k, θ) where k ∈ {−K . . .K} and θ ∈ {m, f}. The state space is denoted by S =

{−K . . .K} × {m, f}. θs refers to the gender in state s.

• pm is the probability that the user is male, pf := 1− pm is probability that the user is female.

• immediate reward R(θ, b) only depends on gender and action(bid placed). R(θ, b) follows some

probability distribution on [−1, 1], we also have an analytic form for its expected value.

• When you bid b:

– Your probability of winning the auction is Pwin,θ(b).

– Expected reward for bidding b when gender is θ, R̄(θ, b) := E[R(θ, b)] = (vθ − b)Pwin,θ(b) +∫ b
0
Pwin,θ(u)du

• Total reward is
∑T
t=1R(θt, at), gender at time t := θt and action taken at time t := at

• Regret after T steps, for the learning algorithm L starting at s, ∆(M,L, s, T ) := Tρ∗M−
∑T
t=1R(θt, at),

at is the amount to bid at step t (chosen on the fly by L) . ρ∗M represents the optimal average

reward for the MDP M .

Regarding the bids:

1. if they lie in the set {b1, b2, . . . , bl|bi ∈ [0, 1]∀i} its the “discrete bids” setting

2. if they lie in the set [0, 1] its the “continous bids” setting

Our goal is to obtain upper bounds for regret in both settings

• First we show that for any deterministic “continous-bid” policy π : S → R+ for the MDP M =

(S,A = [0, 1], P,R) we can construct a stochastic “discrete-bid” policy πε : S → ∆(N ′) 1 for the

MDP M ′ = (S,A = N ′, P,R) such that πε performs close to π.

• An upper bound for regret in the discrete bids settings is obtained by an analysis similar to UCRL2

but the structure of our MDP allows us to obtain a tighter regret bound.

• We use the two above results to obtain an upper bound for regret in the continous bids setting.

About notation S,A refers to the state space and action space. With some abuse of notation they

also refer to size of state space and size of action space. The usage will be clear by context.

1N ′ is the set {nε|n ∈ N and nε ∈ [0, 1]}, ∆(N ′) indicates we are considering probability distributions over N ′
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7.1 Continous v/s discrete bids

7.1.1 Bidding policies

Let π : S → R+ be a deterministic continous bid policy and s = (k, θ) ∈ S be a state. We denote by

rπ(s) the expected immediate reward of policy π at state s and by Wπ(s) the probability of winning the

auction while in state s (by bidding π(s)).

rπ(k, θ) := R̄(θ, π(k, θ)) = (vθ − π(k, θ))Pwin,θ(π(k, θ)) +

∫ π(k,θ)

0

Pwin,θ(u)du

Wπ(k, θ) := Pwin,θ(π(k, θ))

7.1.2 Discrete bidding policy

Let π be a policy and let ε > 0. We will construct a policy πε whose bids are multiple of ε and whose

performance is close to π. We do it by using the following lemma:

Lemma 7. Let π : S → R+ be a (deterministic) continous bid policy. Then there exists a (randomized)

discrete bidding policy πε whose bids are restricted to εN such that:

rπε(k, θ) ≥ rπ(k, θ)− 2ε

Wπε(k, θ) = Wπ(k, θ)

Note that for randomized policy πε : S → ∆(N ′)

rπε(k, θ) :=
∑
∀i

P (πε(k, θ) = bi)R̄(θ, bi)

Wπε(k, θ) :=
∑
∀i

P (πε(k, θ) = bi)Pwin,θ(bi)

Proof. Let (k, θ) ∈ S and let n ∈ N be such that nε ≤ π(k, θ) < (n+ 1)ε. Consider a policy that, in this

state (k, θ) bids nε with probability p and (n+ 1)ε with probability 1− p. Consider:

pPwin,θ(nε) + (1− p)Pwin,θ((n+ 1)ε).

As b 7→ Pwin,θ(b) is a non-decreasing function, there exists p such that the above expression equals

Pwin,θ(π(k, θ)). This defines the policy πε.

By definition, for all states, we have Wπε(k, θ) = Wπ(k, θ). Moreover, the expected immediate reward

of this policy is

22



rπε(k, θ) = p
[
(vθ − nε)Pwin,θ(nε) +

∫ nε

0

Pwin,θ(u)du
]

+ (1− p)
[
(vθ − (n+ 1)ε)Pwin,θ((n+ 1)ε) +

∫ (n+1)ε

0

Pwin,θ(u)du
]

= (vθ − nε)[pPwin,θ(nε) + (1− p)Pwin,θ((n+ 1)ε)]− (1− p)Pwin,θ((n+ 1)ε)ε

+

Integral term︷ ︸︸ ︷
p[

∫ nε

0

Pwin,θ(u)du] + (1− p)[
∫ (n+1)ε

0

Pwin,θ(u)du]

= (vθ − nε)Pwin,θ(π(k, θ))− (1− p)Pwin,θ((n+ 1)ε)ε+ Integral term

≥ (vθ − π(k, θ))Pwin,θ(π(k, θ))− (1− p)Pwin,θ((n+ 1)ε)ε+ Integral term

≥ (vθ − π(k, θ))Pwin,θ(π(k, θ))− ε+ Integral term

≥ (vθ − π(k, θ))Pwin,θ(π(k, θ))− ε+

∫ π(k,θ)

0

Pwin,θ(u)du− ε

≥ rπ(k, θ)− 2ε

where the first inequality holds because π(k, θ) ≥ nε. The second last inequality is obtained using the

following observation

p[

∫ nε

0

Pwin,θ(u)du] + (1− p)[
∫ (n+1)ε

0

Pwin,θ(u)du]

=
[ ≥

∫ π(k,θ)
0 Pwin,θ(u)du︷ ︸︸ ︷∫ (n+1)ε

0

Pwin,θ(u)du
]

+
[ ≥−ε︷ ︸︸ ︷
−p(

∫ (n+1)ε

nε

Pwin,θ(u)du)
]

7.1.3 Discrete-bids policies are almost optimal

Lemma 8. For the continous bids MDP M = (S,A = [0, 1], P,R), let π : S → R+ be an optimal policy

for the average reward criteria and ρ∗M be its optimal average reward. Then for the discrete bids MDP

M ′ = (S,A = N ′, P,R), there exists an optimal (deterministic) discrete-bids policy π′ : S → N ′ with

optimal average reward ρ∗M ′ such that ρ∗M ′ ≥ ρ∗M − 2ε.

Proof. We are comparing optimality results for two MDPs M : (S,A = [0, 1], R), M ′ : (S,A = N ′, R).

We know by Lemma 7 that for any continous bid policy in M we can construct a randomized discrete

bidding policy πε in M ′ with bids randomized over N ′ = {nε|n ∈ N and nε ∈ [0, 1]}, so using

rπε(k, θ) ≥ rπ(k, θ)− 2ε, definition 4.1 =⇒

ρε︷ ︸︸ ︷∑
s=(k,θ)∈S

µπε(s)rπε(k, θ) =
∑

s=(k,θ)∈S

µπ(s)rπε(k, θ)

≥
∑

s=(k,θ)∈S

µπ(s)[rπ(k, θ)− 2ε] ≥

ρ∗M︷ ︸︸ ︷∑
s=(k,θ)∈S

µπ(s)rπ(k, θ) − 2ε
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ρε refers to the average reward for πε. For M ′ it is also known that there exists a deterministic discrete

bidding policy π′ : S → N ′ that gives optimal average reward ρ∗M ′ .

ρ∗M ′ ≥ ρε
ρε ≥ ρ∗M − 2ε

7.2 Regret bound for discrete bids

UCRL2 is an online learning algorithm for finite state space and finite action space MDPs. We modify

the UCRL2 algorithm for our MDPs structure and obtain a regret bound of Õ(D
√
AT ) which is tighter

than if we directly applied UCRL2 2. Here D refers to the diameter of the MDP M ′ i.e D = DM ′(see

3.3).

7.2.1 Description of the Algorithm

First lets see the modified UCRL2 algorithm. Initial state s1 = (0, θ1) where θ1 ∼ Bernoulli(pf )3

the number of times (gender= θ and action = a) in episode k is denoted by vk(θ, a)

Algorithm 10 UCRL 2 adapted

Input: Confidence parameter δ ∈ (0, 1),
Initialize: Set t := 1, s1 as defined earlier
for episodes k = 1, 2 . . . do

Initialize episode k:
1. Set start time of episode tk = t
2. ∀(θ, a) ∈ {m, f} ×A, vk(θ, a) := 0
Also Nk(θ, a) := #{τ < tk : θτ = θ, aτ = a}
3. Rk(θ, a) :=

∑tk−1
τ=1 rτ1θτ=θ,aτ=a

Pwin,k(θ, a) := #{τ < tk : θ = θ, at = a & won auction}
Compute estimates r̂k(θ, a) := Rk(θ,a)

max{1,Nk(θ,a)} p̂win,k(θ, a) :=
Pwin,k(θ,a)

max{1,Nk(θ,a)}
4. Compute Policy π̃k that is average reward optimal among all Mk . Extended value iteration
5. Execute policy π̃k
while vk(θt, π̃k(st)) < max{1, Nk(θt, π̃k(st))} do

Action at = π̃k(st), obtain reward rt and observe next state st+1

vk(θt, at) = vk(θt, at) + 1
t := t+1

end while
end for

Mk is defined as the set of all MDPs with probability of winning p̃win(θ, a) close to p̂win,k(θ, a) and

mean reward r̃(θ, a) close to r̂k(θ, a), Quantitatively the “closeness” is as follows, we must have ∀θ,∀a:

2which has a regret bound of Õ(DS
√
AT )

3θ = 1 with probability pf , θ = 0 with probability pm, pm + pf = 1
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|r̃(θ, a)− r̂k(θ, a)| ≤ d′(θ, a) =

√
c1 log(c′1Atk/δ)

max{1, Nk(θ, a)}
(7.1)

|p̃win(θ, a)− p̂win,k(θ, a)| ≤ d(θ, a) =

√
c2 log(c′2Atk/δ)

max{1, Nk(θ, a)}
4 (7.2)

In the above c1 = 14, c′1 = 2, c2 = 7/2, c′2 = 2, these constants are picked for ease of analysis in the

proof of lemma 11.

Also note how the mean reward for (state,action), transitions from (state,action) are defined:

r̃(s, a) := r̃(θs, a)

p̃(s′|s = (diff, θ), a) :=



pmp̃win(θ, a) if s′ = (diff + (−1)θ,m)

pf p̃win(θ, a) if s′ = (diff + (−1)θ, f)

pm(1− p̃win(θ, a)) if s′ = (diff,m)

pf (1− p̃win(θ, a)) if s′ = (diff, f)

0 for any other s′

(7.3)

Lemma 9. If ∀(θ, a)|p̂win,k(θ, a)− pwin(θ, a)| ≤ ε then ∀(s, a) ‖p̂k(.|s, a)− p(.|s, a)‖1 ≤ 2ε 5

Here pwin(θ, a) is the “true” probability of winning the auction for user of type θ by bidding a. p(.|s, a)

is the corresponding transition probability vector. p̂k(.|s, a) is the estimated transition probability vector,

it uses p̂win,k(θ, a) as an estimate for auction win probability.

Proof. For any non-edge state s ‖p̂(.|s, a)− p(.|s, a)‖1 can be broken down into 4 terms corresponding to

the four transitions, θs denotes the gender in state s.

|pm
(
p̂win,k(θs, a)− pwin(θs, a)

)
|+ |pf

(
p̂win,k(θs, a)− pwin(θs, a)

)
|+

|pm
(

(1− p̂win,k(θs, a))− (1− pwin(θs, a))
)
|+ |pf

(
(1− p̂win,k(θs, a))− (1− pwin(θs, a))

)
|

= 2pm|p̂win,k(θs, a)− pwin(θs, a)|+ 2pf |p̂win,k(θs, a)− pwin(θs, a)| = 2|p̂win,k(θs, a)− pwin(θs, a)|

The main step in extended value iteration (see [4]) is the following maximization, the second equa-

tion(7.4) is what it looks like for our MDP

4See the relation between pwin and p(.|s, a) in Lemma 9, note this gets rid of the explicit l1 norm condition in UCRL2
5For the edge states the difference is exactly zero, since we know pm and pf
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ui+1(s) = max
a∈A

{
r̃(s, a) + max

p(.)∈Polytope

{ ∑
s′∈S

p(s′)ui(s
′)
}}

ui+1(s) = max
a∈A

{
r̃(s, a) + max

p̃win(θ,a)∈Polytope

{
p̃win(θ, a)φ(s) + c(s)

}}
(7.4)

Where the polytope is given by Eq(7.2)(which requires p̃win(θ, a) ∈ [0, 1] and to be within d(θ, a) of

p̂win,k(θ, a)). The inner maximization is easy to do for our MDP since it can be written as p̃win(θ, a)ψ(s) + c(s)

c(s), ψ(s) are terms we get by collecting ui(s
′) i.e the ui values of the next 4 states from s(like in Eq(3.5)).

So if ψ(s) ≥ 0, set p̃win(θ, a) = min{1, p̂win,k(θ, a) + d(θ, a)}
If ψ(s) < 0, set p̃win(θ, a) = max{0, p̂win,k(θ, a)− d(θ, a)}
Also set r̃(s, a) = r̃(θs, a) = r̂k(θs, a) + d′(θs, a).

The following is theorem 7 from UCRL2([4])

Theorem 10. Let M be the set of all MDPs with state space S, action space A, transition prob-

abilities p̃(.|s, a) and mean rewards r̃(s, a) that satisfy ‖p̃(.|s, a)− p̂(.|s, a)‖1 ≤ d(s, a) and |r̃(s, a) −
r̂(s, a)| ≤ d′(s, a),∀s,∀a. Where the probability distributions p̂(.|s, a), values r̂(s, a) ∈ [0, 1] and d(s, a) >

0, d′(s, a) ≥ 0. If M contains at least one communicating MDP, extended value iteration converges.

Further by stopping extended value iteration when span(ui+1 − ui) < ε, then the greedy policy wrt to ui

is ε- optimal

About convergence of extended value iteration for UCRL2 adapted If |p̃win(θ, a)−p̂win,k(θ, a)| ≤
d(θ, a) and |r̃(θ, a)− r̂k(θ, a)| ≤ d′(θ, a) then all the conditions for the above theorem are satisfied.

So, we run extended value iteration at the start of episode k to obtain a 1/
√
tk - optimal policy π̃k

Steps to bound regret:

1. Splitting into episodes

2. Bound the regret when the true MDP M /∈Mk

3. Consider the case when the true MDP M ∈Mk

4. Combine results from step 1,2,3

7.2.2 Splitting into Episodes∑T
t=1R(θt, at) is a random variable, but it can be appropriately bounded using the Hoeffding inequality

• Immediate reward R(s, a) := R(θs, a) i.e it only depends on gender of state s and action. Similarly

the expected immediate reward R̄(s, a) := R̄(θs, a)

• Each R(θ, a) is a probability distribution on [−1, 1], thus R̄(θ, a) ∈ [−1, 1]

• vk(θ, a) denotes the number of times (θt = θ and at = a) in episode k of UCRL2 adapted.

• N(θ, a) is the #(θ, a) after T steps. therefore
∑
θ,aN(θ, a) = T

•
∑m
k=1 vk(θ, a) = N(θ, a), m is the total number of episodes.
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Recap of Hoeffding inequality, for Sn = X1 + . . . Xn where each Xi ∈ [a, b]

P (Sn ≤ E[Sn]− t) ≤ exp(− 2t2

n(b−a)2 )

P

(
T∑
t=1

R(θt, at) ≤
∑
θ,a

N(θ, a)R̄(θ, a)−
√
z1T log(

z2T

δ
)

)

≤ exp

(
− z1log(z2T/δ)

2

)
(7.5)

For z1 = 5/2 and z2 = 8 the rhs is exp(− 5
4 log(8T/δ)) = ( δ

8T )5/4 < δ
12T 5/4

Therefore Tρ∗ −
∑T
t=1R(θt, at) < Tρ∗ −

∑
θ,aN(θ, a)R̄(θ, a) +

√
5
2T log( 8T

δ ) with probability atleast

1− δ
12T 5/4

Therefore regret ∆(s1, T ) = Tρ∗−
∑T
t=1R(θt, at) ≤

m∑
k=1

∆k +

√
5

2
T log(8T/δ) wp atleast 1− δ

12T 5/4 .

Here ∆k =
∑
θ,a vk(θ, a)(ρ∗ − R̄(θ, a))

The boxed term can be rewritten as

m∑
k=1

∆k1M/∈Mk
+

m∑
k=1

∆k1M∈Mk
+

√
5

2
T log(

8T

δ
) (7.6)

7.2.3 Episodes with M /∈Mk

Lets upper bound the regret for UCRL2 episodes in which the set of plausible MDPsMk does not contain

the true MDP M

Analysis The while loop stopping criteria ensures the following∑
θ,a vk(θ, a) ≤

∑
θ,aNk(θ, a) = tk − 1 Note that the optimal average reward ρ∗ ≤ 1 , R̄(θ, a) ∈ [−1, 1]

therefore ρ∗ − R̄(θ, a) ≤ 2. Thus we can build the following sequence of inequalities

∑m
k=1 ∆k1M/∈Mk

≤
∑m
k=1 1M/∈Mk

∑
θ,a vk(θ, a)(ρ∗ − R̄(θ, a))

≤ 2
∑m
k=1 tk1M/∈Mk

= 2
∑T
t=1 t

∑m
k=1 1tk=t,M /∈Mk

≤ 2
∑T
t=1 t1M/∈M(t)

≤ 2

≤
√
T︷ ︸︸ ︷

bT 1/4c∑
t=1

t1M/∈M(t) +2
∑T
t=bT 1/4c+1 t1M/∈M(t) ≤ 2

√
T +

→0 with high prob︷ ︸︸ ︷
2

T∑
t=bT 1/4c+1

t1M/∈M(t)

The idea is if P (M /∈M(t)) ≤ δ/tn where n is a “large enough” positive integer, then over the course

of t =
⌊
T 1/4

⌋
+ 1 to T , we can ensure probability of M ∈M(t) is high, then indicator 1M/∈M(t) = 0 with

high probability. Giving the final result that
∑m
k=1 ∆k1M/∈Mk

≤ 2
√
T

Lemma 11. P (M /∈M(t)) ≤ δ
15t6
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Proof. Recall Hoeffding P (|X̄ − E[X̄]| ≥ t) ≤ 2 exp
(

−2n2t2∑n
i=1 (bi−ai)2

)
M(t) denotes the set of MDPs with prob of winning and mean reward, p̃win(θ, a) and r̃(θ, a) in the sets

defined by (7.2) and (7.1) (recall c1 = 14, c′1 = 2). M /∈M(t) if R̄(θ, a), pwin(θ, a) do not lie in (7.1), (7.2)

for any (θ, a).

Using hoeffding inequality for X̄ − E[X̄] and the fact that δ ∈ (0, 1]. Also note that the n below is a

placeholder for N(θ, a)

∵

√
2

n
log
(120At7

δ

)
≤
√

14

n
log
(2At

δ

)
∴ P

(
|r̂(θ, a)− R̄(θ, a)| ≥

√
14

n
log
(2At

δ

))
≤ 2 exp

(
− 2n2

4n
· 2

n
· log

(120At7

δ

))
≤ δ

60At7

Similarly to lie outside set (7.2), (but here in the hoeffding inequaility the interval [ai, bi] = [0, 1]). Since

c2 = 7/2 and c′2 = 2

∵

√
1

2n
log
(120At7

δ

)
≤
√

7

2n
log(2At/δ)

∴ P

(
|p̂win(θ, a)− pwin(θ, a)| ≥

√
7

2n
log
(2At

δ

))
≤ 2 exp

(
− 2n · 1

2n
· log(

120At7

δ
)
)
≤ δ

60At7

Now the next steps follow Lemma 17(Appendix C.1) in UCRL2 (Union bound over all possible values of

n = 1, 2, . . . t− 1).

P

(
|r̂(θ, a)− R̄(θ, a)| ≥

√
14

max{1, N(θ, a)}
log(

2At

δ
)

)
≤

t−1∑
N(θ,a)=1

δ

60At7
≤ δ

60At6

P

(
|p̂win(θ, a)− pwin(θ, a)| ≥

√
7

2 max{1, N(θ, a)}
log(

2At

δ
)

)
≤ δ

60At6

M /∈ M(t) occurs if (|R̄(θ, a) − r̂(θ, a)| ≥ d′(θ, a)) or |pwin(θ, a) − p̂win(θ, a)| ≥ d(θ, a) for any (θ, a). So

we sum the above error probabilities over all (θ, a). Thus P (M /∈M(t)) ≤ δ
30t6 ≤

δ
15t6

7.2.4 Episodes with M ∈Mk

vk(θ, a) defined earlier denotes the number of times (θ, a) occurs in episode k. Similarly vk(s, a) denotes

the number of times Algorithm 10 was in state s and took action a during episode k. 6

Theorem 10 ensures that π̃k is 1√
tk

optimal. Let ρ̃k denote the average reward estimate obtained after

convergence. Since M ∈Mk, this means the average reward for the true MDP ρ∗ ≤ ρ̃k + 1√
tk

∆k =
∑
θ,a

vk(θ, a)(ρ∗ − R̄(θ, a)) ≤
∑
θ,a

vk(θ, a)(ρ̃k − R̄(θ, a)) +
∑
θ,a

vk(θ, a)√
tk

6Note that episode ends are triggered by some vk(θ, a) ≥ Nk(θ, a), vk(s, a) is introduced for the sake of analysis
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The boxed term can be rewritten 7 as
∑
s,a

vk(s, a)(ρ̃k − R̄(s, a)) +
∑
s,a

vk(s, a)√
tk

.

Convergence criteria gives |ui+1(s)− ui(s)− ρ̃k| ≤ 1√
tk
∀s

Also ui+1(s) = r̃k(s, π̃k(s)) +
∑
s′ p̃k(s′|s, π̃k(s)) · ui(s′), So by expanding we get

∣∣∣(ρ̃k − r̃k(s, π̃k(s))
)
−
(∑

s′

p̃k(s′|s, π̃k(s)) · ui(s′)− ui(s)
)∣∣∣ ≤ 1√

tk

∆k =
∑
s,a

vk(s, a)(ρ̃k − r̃k(s, a)) +
∑
s,a

vk(s, a)(r̃k(s, a)− R̄(s, a)) +
∑
s,a

vk(s, a)√
tk

(7.7)

∆k ≤

term 1︷ ︸︸ ︷
vk(P̃k − I)ui+

term 2︷ ︸︸ ︷∑
s,a

vk(s, a)(r̃k(s, a)− R̄(s, a)) +

term 3︷ ︸︸ ︷
2
∑
s,a

vk(s, a)√
tk

(7.8)

vk := vk
((
s, π̃k(s)

))
s

is a row vector, containing visit count for each state s and corresponding action

π̃k(s). P̃k :=
(
p̃k(s′|s, π̃k(s))

)
s,s′

is the S × S transition matrix, each row of this matrix has exactly 4

non zero entries (see (7.3)).

term 3 = 2
∑
θ,a

vk(θ,a)√
tk

, term 2 8 ≤ 2
∑
s,a vk(s, a)

√
c1 log(c′1Atk/δ)

max{1,Nk(θs,a)} = 2
∑
θ,a vk(θ, a)

√
c1 log(c′1Atk/δ)
max{1,Nk(θ,a)} ,

also max{1, Nk(θ, a)} ≤ tk ≤ T

term2+term3 ≤
(

2

√
c1 log

(c′1AT
δ

)
+ 2
)∑
θ,a

vk(θ, a)√
max{1, Nk(θ, a)}

(7.9)

wk(s) := ui(s)− mins ui(s)+maxs ui(s)
2

Just as in the UCRL2 analysis, term 1 i.e vk(P̃k − I)ui can be rewritten as vk(P̃k − I)wk

Also vk(P̃k − I)wk = vk(P̃k − Pk)wk + vk(Pk − I)wk. Here Pk :=
(
p(s′|s, π̃k(s))

)
s,s′

First we bound vk(P̃k − Pk)wk

vk(P̃k − Pk)wk ≤
∑
s

vk(s, π̃k(s)) · ‖p̃k(.|s, π̃k(s))− p(.|s, π̃k(s))‖1 · ‖wk‖∞

≤
∑
s

vk(s, π̃k(s)) · 4

√
c2 log(c′2Atk/δ)

max{1, Nk(θs, π̃k(s))}
· D

2

≤ 2D
√
c2 log(c′2Atk/δ)

∑
s

vk(s, π̃k(s))√
max{1, Nk(θs, π̃k(s))}

= 2D
√
c2 log(c′2Atk/δ)

∑
θ,a

vk(θ, a)√
max{1, Nk(θ, a)}

≤ 2D
√
c2 log(c′2AT/δ)

∑
θ,a

vk(θ, a)√
max{1, Nk(θ, a)}

(7.10)

The upper bound for vk(Pk−I)wk exactly follows the UCRL2 analysis, it uses the Azuma-Hoeffding

inequality for the martingale difference sequence Xt := (p(.|st, at)− est+1
)wk(t)1M∈Mk(t)

(see [4])

7∵ R̄(s, a) = R̄(θs, a)
8We use r̃k(s, a) − R̄(s, a) ≤ |r̃k(θs, a) − r̂k(θs, a)| + |r̂k(θs, a) − R̄(θs, a)| ≤ 2d′(θs, a), Similarly

‖p̃k(.|s, π̃k(s))− p(.|s, π̃k(s))‖1 ≤ ‖p̃k(.|s, π̃k(s))− p̂k(.|s, π̃k(s))‖1 + ‖p̂k(.|s, π̃k(s))− p(.|s, π̃k(s))‖1 ≤ 4d(θs, π̃k(s))
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vk(Pk − I)wk ≤ D +

tk+1−1∑
t=tk

Xt

m∑
k=1

vk(Pk − I)wk ≤ mD +

T∑
t=1

Xt (7.11)

∑T
t=1Xt ≤ D

√
5
2T log( 8T

δ ) with probability atleast 1− δ
12T 5/4 (AZ-Hoeffding inequality)

Lemma 12. Number of episodes m of UCRL2 adapted upto step T ≥ 2A is upper bounded as

m ≤ 2A log2(
4T

A
)

Proof. N(θ, a) := #{τ < T + 1 : sτ = s, aτ = a} be the total number of (θ, a) observations till step T .

For each episode k < m the episode end is triggered by some (θ, a) for which either

1. vk(θ, a) = 1 when Nk(θ, a) = 0

2. or vk(θ, a) = Nk(θ, a)

Let K(θ, a) be the number of episodes with vk(θ, a) = Nk(θ, a) and Nk(θ, a) > 0 then

N(θ, a) =

m∑
k=1

vk(θ, a) ≥ 2K(θ,a) − 1

T =
∑
θ,a

N(θ, a) ≥
∑
θ,a

(
2K(θ,a) − 1

)
(7.12)

Also
∑
θ,aK(θ, a) ≥ m− 1− |θ| ·A ≥ m− 1− 2A . 9∑

θ,a 2K(θ,a) ≥ 2A
(∏

θ,a 2K(θ,a)
)1/2A

= 2A · 2
∑
θ,a 2K(θ,a)/2A

≥ 2A2
m−1
2A −1 10

Finally from (7.12) and AmGm inequality T ≥ 2A(2
m−1
2A −1 − 1). And since T ≥ 2A

2
m−1
2A −1 ≤

( T
2A

+ 1
)
≤
(T
A

)

So m ≤ 1 + 2A+ 2A log2(TA ) ≤ 2A(2 + log2(TA )) ≤ 2A(log2(
4T

A
)) .

7.2.5 Summing over episodes with M ∈Mk

Returning to Eq(7.8) the sum of term1,term2,term3 is upper bounded(see below) with probability atleast

1− δ
12T 5/4

We use (7.10), (7.11), (7.9). 11

9as in the worst case we fill each (θ, a) bin, before doubling occurs
10Arithmetic mean ≥ Geometric mean
11Diameter(D) for our MDP 2K ≤ D ≤ c(2K + 1), K ∈ N is the absolute parity, c is a constant
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m∑
k=1

∆k1M∈Mk
≤
(

2

√
14 log(

2AT

δ
) + 2

) m∑
k=1

∑
θ,a

vk(θ, a)√
max{1, Nk(θ, a)}

+ 2D

√
7

2
log(

2AT

δ
)

m∑
k=1

∑
θ,a

vk(θ, a)√
max{1, Nk(θ, a)}

+D

√
5

2
T log(

8T

δ
) + 2DA log2(

4T

A
)

The main intermediate step here is that

m∑
k=1

∑
θ,a

vk(θ, a)√
max{1, Nk(θ, a)}

≤ (
√

2 + 1)
√

2AT

thus with probability atleast 1− δ
12T 5/4

m∑
k=1

∆k1M∈Mk
≤D

√
5

2
T log(

8T

δ
) + 2DA log2(

4T

A
) +

(
2D

√
14 log(

2AT

δ
) + 2

)
(
√

2 + 1)
√

2AT

7.2.6 Sum of ∆k over all episodes

Recall Eq (7.6) and the previous results, Thus with probability atleast

1− δ
12T 5/4 − δ

12T 5/4 − δ
12T 5/4 = 1− δ

4T 5/4 ≥ 1− δ

∆(s1, T ) ≤
m∑
k=1

∆k1M/∈Mk
+

m∑
k=1

∆k1M∈Mk
+

√
5

2
T log(

8T

δ
) (7.13)

≤
√

5

2
T log(

8T

δ
) + 2

√
T +D

√
5

2
T log(

8T

δ
) + 2DA log2(

4T

A
)

+
(

2D

√
14 log(

2AT

δ
) + 2

)
(
√

2 + 1)
√

2AT

Each of the three δ
12T 5/4 correspond to the probability of a “bad” event occuring, namely:

1. Probability of landing outside the confidence interval in (7.5)

2. We know P (∃ : T 1/4 < t ≤ T : M /∈M(t)) ≤ δ
12T 5/4 , this effectively makes the term 1M/∈Mk(t) → 0

with high probability.

3. Probability of landing outside the confidence interval given by the azuma hoeffding inequality

The goal is to prove a bound of Õ(D
√
AT ) ∀T ≥ 1

If 1 ≤ T ≤ 25
√
AT log(Tδ ) ⇐⇒ 1 ≤ T ≤ 252A log(Tδ ) its straightforward:

∆(s1, T ) = Tρ∗ −
∑T
t=1R(θt, at) ≤

∑T
t=1(1−R(θt, at)) ≤ 2T ≤ 50

√
AT log(Tδ )

If T > 252A log(Tδ ) ⇐⇒ A < 1
25 log(Tδ )

√
AT log(Tδ ) 12, also log2(4T ) ≤ 2 log(T ) therefore 2DA log2( 4T

A ) ≤

12Also notice how T has to be > 100 to satisfy T > 625A log(T
δ

) > 1250 log(T )
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4
25D

√
AT log(Tδ )

Notice that for T > 252A log(Tδ ) 13, log( 2AT
δ ) ≤ 2 log(Tδ ) and log( 8T

δ ) ≤ 2 log(Tδ )

Also A ≥ 2, 1√
A
≤ 1√

2
, Thus using Eq (7.13), we have for T > 1 with probability atleast 1− δ

∆(s1, T ) ≤ D
√
AT
(

2

√
1

A
· 5

2
log(

8T

δ
) + 2

√
2(
√

2 + 1)

√
14 log(

2AT

δ
) + 2

√
2(
√

2 + 1) +
1√
A

)
+ 2DA log2(

4T

A
)

≤ D
√
AT log(

T

δ
)
(

2

√
5

2
+ 2
√

2(
√

2 + 1)
√

28 + 2
√

2(
√

2 + 1) +
1√
2

+
4

25

)
≤ 46.9904D

√
AT log(

T

δ
) ≤ 50D

√
AT log(

T

δ
)

7.3 Regret bound for continous bids

What we have now:

1. For the discrete bids mdp M ′ = (S,A = N ′, P,R) a Õ(D
√
AT ) bound14 for Tρ∗M ′ −

∑T
t=1R(θt, at)

ρ∗M ′ is the optimal average reward obtained by a deterministic discrete bids policy π : S → N ′.

2. By Lemma 8 Tρ∗M ′ ≥ Tρ∗M − 2εT . Where ρ∗M is the optimal average reward for the MDP M =

(S,A = [0, 1], P,R)

Notice that for A = N ′, |A| = 1/ε

Tρ∗M ′ −
T∑
t=1

R(θt, at) ≤ 50D

√
AT log(

T

δ
)

Tρ∗M − Tρ∗M ′ ≤ 2εT

=⇒ Tρ∗M −
T∑
t=1

R(θt, at) ≤ 2εT + 50D

√
1

ε
T log(

T

δ
) (7.14)

Setting ε to T−1/3 Eq(7.14) 15 can be written as

Tρ∗M −
T∑
t=1

R(θt, at) ≤ 2T · T−1/3 + 50D

√
T · T 1/3 log(

T

δ
)

≤ 2T 2/3 + 50DT 2/3

√
log(

T

δ
)

≤ 51DT 2/3

√
log(

T

δ
)

13the constraint implies T > 2A, why? simple proof by contradiction
14Nowhere in the analysis for UCRL2 adapted did we use that A = N ′ specifically, so this regret bound is valid for any

mdp M : (S,A, P,R) long as A is finite and has bounded diameter
15How did we get this exponent?, Consider ε = Tx. Solution of 1 + x = 1−x

2
, Notice how a lower/higher x value will

dominate the other term(in the rhs of (7.14))
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The above is a Õ(DT 2/3) upper bound.

8 Appendix B

8.1 Important results for 2nd price auctions

Weak dominance of truthful bidding in a 2nd Price auction Suppose advertiser j ’s true value

is vj , and it considers bidding bj > vj . Let d denote the highest bid of the other bidders i 6= j. There

are three possible outcomes from j’s perspective: (i) d > bj , vj ;(ii) bj > d > vj ; or(iii) bj , vj > d. In

the event of the first or third outcome, j would have done equally well to bid vj rather than bj > vj .

However, in case (ii), j will win and pay more than its value if it bids bj(thereby obtaining negative

reward), something that won’t happen if it bids vj . Thus, j does better to bid vj than bj > vj . A similar

argument shows that j also does better to bid vj than to bid bj < vj

Maximization lemma for bids Consider the function fφ(x) = (φ−x)g(x) +
∫ x

0
g(u)du where g(x) is

a cumulative distribution function with support ∈ [0, 1]. Its derivative wrt x, f ′φ(x)

d

dx

(
(φ− x)g(x)

)
+

d

dx

(∫ x

0

g(u)du
)

= −g(x) + (φ− x)g′(x) + g(x) = (φ− x)g′(x) (8.1)

Note g′(x) is always ≥ 0. Thus fφ(x) for x < φ is non-decreasing as (φ − x)g′(x) ≥ 0 and for x > φ is

non-increasing as (φ− x)g′(x) ≤ 0. At x = φ , fφ(x) =
∫ φ

0
g(u)du.

Thus for continuous x fφ(x) is maximized at φ, and for discrete x it is the point on either

side of φ i.e dφeclosest , bφcclosest.

8.2 Pmf parameters

Alpha Beta table The following table gives the mean and standard deviation ofD = max{B1, . . . , B49}
where each Bi ∼ 1

100BetaBinom(100, α, β).

Set alpha beta mean standard deviation
1 2 47 0.14627666398598949 0.03250368101917681
2 4 34 0.2651640367653201 0.04253368856779681
3 9 38 0.3655329680234962 0.041353136357949356
4 15 38 0.4648532276760166 0.04030517882433639
5 22 36 0.5624004400909328 0.03843523136449991
6 16 19 0.6729414850007737 0.0422982170781183
7 27 20 0.7598823608667473 0.03444315362508511
8 25 12 0.8553404687956032 0.02987724338602748
9 27 7 0.9394899406797824 0.020121239642026383

The plots for all the parameter sets can be seen on the next page. In particular for distributions

Dm, Df for the experiments:

• In scenario 1 - Set 1 and 8 were chosen

• In scenario 2 - Set 2 and 3 were chosen

• In scenario 3 - Set 6 and 8 were chosen
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